

III Semester B.A./B.Sc. Examination, November/December 2018 (Semester Scheme) (CBCS) (F + R) (2015-16 and Onwards) MATHEMATICS – III Mathematics

Time: 3 Hours

Max. Marks: 70

Instruction: Answer all questions.

PART - A

Answer any five questions:

 $(5 \times 2 = 10)$

- 1. a) Find the number of generators of the cyclic group of order 60.
 - b) Find all the left cosets of $H = \{0, 4, 8\}$ in $(Z_{12}, +_{12})$.
 - c) Test the nature of the sequence $\{n[\log (n + 1) \log n]\}$.
 - d) Examine the convergence of the second $\sin\left(\frac{1}{n}\right)$
 - e) Test the convergence of the series $1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \dots$
 - f) Find the value of 'C' using Rolle's theorem for the function $f(x) = 8x x^2$ in [2, 6].
 - g) State Lagrange's mean value theorem.
 - h) Evaluate $\lim_{x\to 0}$ (cosec $x \cot x$).

PART - B

Answer one full question:

 $(1 \times 15 = 15)$

- 2. a) In a group G, prove that $O(a) = O(a^{-1}) \forall a \in G$.
 - b) Find the number of generators of the cyclic group of order 8. If 'a' is one of the generator, then what are the other generators?
 - c) State and prove Euler's theorem.

OR

- a) Any two right (left) cosets of a subgroup H of a group G are either disjoint or identical.
 - b) Define cyclic group. Show that every cyclic group is abelian.
 - c) If G is a finite group and H is a subgroup of G, then the order of H divides the order of G.

P.T.O.

PART - C

Answer two full guestions :

(2×15=30)

(:

- 4. a) If $\lim_{n\to\infty} a_n = a$ and $\lim_{n\to\infty} b_n = b$, then prove that $\lim_{n\to\infty} (a_n + b_n) = a + b$.
 - b) Prove that a monotonically increasing sequence which is bounded above is convergent.
 - c) Examine the convergence of the sequence

i)
$$\left\{ \left(1 + \frac{2}{n}\right)^n \right\}$$

ii)
$$\left\{\sqrt{n+1} - \sqrt{n}\right\}$$

- 5. a) Prove that the sequence $\left\{\frac{3n+8}{2n+1}\right\}$
 - Monotonically decreasing
 - ii) Bounded

O.,

- Converges to $\frac{3}{2}$.
- b) Show that the sequence $\{a_n\}$ where $a_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n}$ is convergent.
- c) Find limit of the sequence 0.4, 0.44, 0.444,
- 6. a) State and prove D'Alembert's ratio test for the series of positive terms.
 - b) Examine the convergence of the series $\frac{x^2}{2\sqrt{1}} + \frac{x^3}{3\sqrt{2}} + \frac{x^4}{4\sqrt{3}} + \dots$
 - c) Sum the series to infinity $\frac{1}{6} + \frac{1.4}{6.12} + \frac{1.4.7}{6.12.18} + \dots$
- a) State and prove Leibnitz test on Alternating Series.
 - b) Examine the convergence of the series $\sum \left(\frac{nx}{n+1}\right)^{n}$.
 - c) Sum to infinity of the series $\frac{2^2}{1!} + \frac{3^2}{2!} + \frac{4^2}{3!} + \frac{5^2}{4!} + \dots$

PART - D

Answer one full question:

 $(1 \times 15 = 15)$

8. a) Discuss the continuity of

$$f(x) = \begin{cases} 1+x & \text{for } x < 2 \\ 5-x & \text{for } x \geq 2 \end{cases} \text{ at } x = 2.$$

- b) State and prove Rolle's theorem.
- c) Evaluate:

i)
$$\lim_{x\to 0} \left(\frac{a^x - b^x}{x} \right)$$

ii) $\lim_{x\to 0} (1+\sin x)^{\cot x}$ OR

9. a) Examine the differentiability of the function f(x) defined by

$$f(x) = \begin{cases} x^2 - 1 & \text{for } x \ge 1 \\ 1 - x & \text{for } x < 1 \end{cases} \text{ at } x = 1.$$

- b) State and prove Cauchy's mean value theorem.
- c) Expand $\tan x$ up to the term containing x^3 by using Maclaurin's expansion.

BMSCW